
ct

d
a
d,
re

r
or
r’s
r-
f

ds
ne
t a
e
de

or-
of

on

ew
sor
h
ne
is
t fit
n.
a

or

s
a

nt.com
Abstract

This paper examines the layered software modules of
a heterogeneous multiprocessor simulator and debugger,
and the design patterns that span these modules. Lucent’s
LUxWORKS simulator and debugger works with multiple
processor architectures. Its modeling infrastructure,
processor models, processor monitor / control, hardware
control, vendor simulator interface and Tcl/Tk extension
layers are spanned by the following design patterns: 1)
build and extend abstract virtual processors, 2) build
reflective entities, and 3) build a covariant extensible
system. Together these modules and patterns define a
processor execution architecture that encourages reuse
and dynamic extensibility.

1. Introduction

Our group within Bell Labs provides software tools
for cosimulation of embedded hardware and software
systems [1], and for the debugging of distributed
applications running on simulated and actual hardware, in
communication systems using Lucent digital signal
processors and assorted microcontrollers. Since 1995 we
have been designing and building a software framework
that addresses the needs of the following groups of users:

• Processor architects who use simulation to
evaluate prospective processors.

• IC designers who combine processor
cores, custom input-output circuitry and
interprocessor communication circuitry
into custom integrated circuits.

• System developers who build and debug
distributed and embedded applications.

• Software tools engineers who build
processor models and develop new tools
features.

• Field application engineers who need to
prototype custom circuitry and custom
tools features rapidly by using the
framework’s Tcl extension language [2,3].

Lucent Technologies markets the current produ
implementation of this framework asluxdbg—the
LUxWORKS simulator / debugger for Lucent embedde
processors [4,5]. Luxdbg satisfies the definition of
framework as “a system that can be customize
specialized, or extended to provide more specific, mo
appropriate, or slightly different capabilities.” [6] The
framework solves two problems often found in othe
processor simulators. First, processor simulat
architectures usually over-couple a specific processo
simulation model to a simulator and debugger. Ove
coupling yields a simulator that can control simulations o
only one processor architecture. Over-coupling also yiel
a debugger that can debug programs for only o
architecture. When a simulator / debugger must suppor
new processor architecture, the only form of reus
available consists of ad hoc, cut-and-paste source co
hacking. This hacking produces yet another process
specific simulator / debugger. Subsequent maintenance
cloned, near-duplicate copies of code requires duplicati
of effort. We call thisthe reuse problem.

The second problem isthe extensibility problem. In
addition to new instructions, a new processor may add n
features never before seen in supported proces
architectures. A Harvard memory architecture, whic
separates program memory from data memory, is o
example. Hardware support for software multi-threading
another. New processor dimensions such as these do no
the cut-and-paste style of simulator / debugger evolutio
There may be no place to put new feature dimensions in
static, hard-coded simulator / debugger. New process
dimensions require modular extension interfaces.

We have solved the reuse and extensibility problem
for multiple processor architectures by designing
simulator / debugger that configures itself to

A Framework for Simulating Heterogeneous Virtual Processors

Dale Parson Paul Beatty John Glossner Bryan Schlieder
Lucent Technologies Lucent Technologies Lucent Technologies Lucent Technologies
Allentown, Pa. 18103 Allentown, Pa. 18103 Allentown, Pa. 18103 Allentown, Pa. 18103
dparson@lucent.com pebeatty@lucent.com glossner@lucent.com bryanschlieder@luce



ir
s

to-
s
e
n

ual
es
s,
h
ds

er
of

at
g
e
for
heterogeneous multiprocessors at run time. Luxdbg builds
on the abstraction of avirtual machine[1, p. 15-17]. This
framework is structured as a set of simulation, debugging,
profiling and hardware-monitor-control modules that
operate on an abstract virtual processor. A processor
designer refines the definition of an abstract virtual
processor into a concrete processor via C++ inheritance
and composition. When the designer has added these
refinements, that designer is rewarded with a powerful
simulator, profiler, graphical debugger, and interfaces to
vendor circuit simulation frameworks.

This paper unfolds as a series of examinations of
luxdbg’s frameworkmodulesand design patterns. The
layered modules provide the major capabilities of the
system. The design patterns provide the rules for
connecting modules and designing new modules. These
patterns solve the reuse and extensibility problems.
Without the patterns this framework would become
gridlocked and brittle over time.

We treat luxdbg as a matrix of modules and design
patterns. Section 2 lays out the horizontal strata of
modules and their interactions within luxdbg. Sections 3
through 5 explore design patterns as vertical spans of the
strata. Section 6 summarizes our results and examines
future directions.

2. Luxdbg framework overview

Figure 1 shows the major modules and the
interactions within the luxdbg framework. Down arrow
and right arrows indicate flow-of-control in client-to-
server transactions. Labeled up arrows indicate server-
client callbacks. Numbers give cardinality of association
of instantiated objects, where “0..1” signifies zero or on
object and “*” signifies zero or more objects. This sectio
starts at the bottom of Figure 1 and works its way up.

Modeling infrastructureis a C++ class library. It
provides base classes that support the abstract virt
processor pattern through inheritance. It also provid
utility classes for building processor signals, register
memory, IO ports and monitor / driver probes throug
composition. A processor architect or other modeler buil
a processor modelby using the classes of modeling
infrastructure, along with C or C++ operations and oth
libraries. A specific processor is not a hard-coded part
the framework.

Luxdbg processors arereflective. Reflection is a
mechanism that allows client code to query a processor
run time to discover the identity of state-bearin
infrastructure objects such as registers within th
processor. The client can then retrieve and set values
these objects.Processor monitor / controlis a class library

Modeling infrastructure

Processor model

Processor monitor / control

Tcl processor monitor / control commands

Hardware interface

Tcl subsystem

script callback

Tcl/Tk graphical user interface Tcl/Tk subsystem

widget event callback

Vendor simulator interface

cosimulate

0..1
1

1
*

1
1

1

*

0..1
1

0..1

*

Figure 1: Luxdbg simulation and debugging architecture

IO callback



l
to
/
nd

ed

les
gh
ate
g

r

m
sor
are
ve

t a
h
ns.
sor

d
e

ies

or.

sor

at
he

t

d.
for simulating, debugging and profiling processor objects
through the reflective processor query interface.

A processor model acts both as asimulation state
machineand as adatabase. As a state machine it simulates
processor execution. As a database it stores state
information for its query interface. Processor monitor /
control can supervise execution of real processor hardware
via the hardware interfacemodule. When a hardware
processor reaches a breakpoint, monitor / control uploads
hardware state into a model. A user can then interact with
state by interacting with its model. When the user has
completed interaction, monitor / control downloads state
from the model to hardware and resumes hardware
execution.

The Tcl subsystemprovides luxdbg’s interpreted
extension language [2,3]. Tcl supports inclusion of
application-specific primitive commands written in C or
C++. Luxdbg’sTcl processor monitor / control commands
provide a textual command layer on top of processor
monitor / control. Users, Tcl extension scripts, and
auxiliary tools use Tcl as a query language for interaction
with processors via monitor / control. Processor events can
trigger recursive callbacks into Tcl for nested script
evaluation.

TheTcl/Tk subsystemis a separate process that houses
our Tcl/Tk graphical user interface(GUI). This optional
client tool uses Tcl queries to communicate with luxdbg’s
main process. It provides a source debugging window for
each processor instance in a luxdbg session, as well as
optional register, memory, breakpoint and data watch
windows. A watch window can use user-supplied Tcl
expressions to provide derived views of processor data.

The vendor simulator interfaceis an optional
procedural interface for integrating luxdbg models into
vendor simulation frameworks such as Model
Technology’s VHDL circuit simulator or Math Works’
Simulink arithmetic function simulator. Luxdbg models
can run as components within these frameworks. Luxdbg
serves as a loader, debugger and model extender. Users
employ the capabilities and model libraries of these
environments while retaining luxdbg for interaction with
Lucent processors. The vendor simulator advances model
state via this interface.

Luxdbg’s normal flow-of-control goes down from
layered client modules to their supporting server modules
as shown in Figure 1. Clients invoke servers. Servers do
not contain hard-coded dependencies on specific clients. A
client may request acallback from a server when the
server detects an event. TheIO callbackof Figure 1, for
example, occurs when a read from an input port object or a
write to an output port object takes place within a model.
These port objects are from modeling infrastructure. If
monitor / control has registered itself for a port callback,

then an input port will fetch a value from monitor / contro
via the callback, and an output port will send a value
monitor / control via the callback. In this way monitor
control can route processor IO events to file sources a
sinks opened by Tcl commands, or up ascript callbackto
a Tcl extension procedure. IO callbacks eliminate the ne
to model all connecting circuitry. Port infrastructure
objects act as generic circuitry, and attached custom fi
or Tcl procedures manipulate input-output values at a hi
level. Embedded application developers can concentr
on programs while ignoring the details of connectin
circuitry.

3. Design pattern: Build and extend abstract
virtual processors

This design pattern is the main element of ou
solution to the reuse problem. Luxdbg has distilled
properties that are common to all instruction strea
processors, and placed them into a set of virtual proces
base classes. This pattern solves problems that
common to all processors. Subsequent patterns sol
problems that arenot-common, i.e., problems whose
solutions vary as processor architectures vary.

3.1 Virtual processor infrastructure

Figure 2 shows the layers of processor models tha
modeler can build from the modules of Figure 1. Eac
processor appears as a nested set of machine definitio
Luxdbg users have interactive access to these proces
layers.

A processor at the lowest level is acircuit machine—a
collection of signals, registers, memory cells, an
transition rules for advancing processor state. Th
modeling infrastructuremodule of Figure 1 supplies
building blocks for constructing a circuit machine. At the
next level is themachine code processoror instruction
stream machine. It fetches, decodes and executes a ser
of programmed binary instructions. Aprocessor modelof
Figure 1 is a machine code instruction stream process
Next, assembly codeand procedural code processors
result from augmenting a bare machine code proces
with symbolic programs.Processor monitor / controlof
Figure 1 contains loader and symbol table objects th
implement these symbolic machine layers. At the top, t
Tcl subsystemof Figure 1 supports theTcl extended
processor. A user or tool can invoke Tcl procedures tha
extend and provide views into lower-level machines.

Each processorinstance namebecomes a Tcl
command prefix that sets thecurrent processorto the
named processor for the duration of that Tcl comman



a
d
ls.
n
s

-
s
e
d
he
t
s.

by

ain
n
ter

ion

e

ry
he
g

For example, in command “p1 load myprog.e,” “p1” is a
processor instance into which luxdbg loads program
“myprog.e.” The Tcl command may be a Tcl extension
procedure that temporarily changes the current processor
to a different named processor. For example, “p1 r0 = [p2
r1]” retrieves the value of register “r1” from processor
“p2” and stores it into register “r0” of processor “p1.”
When the instance name prefix is missing from a
command, that command uses the current processor
already in effect. A user or tool can set the current
processor at a top level, and all commands and scripts that
do not temporarily override this processor, will simply
operate on this processor. In this way generic scripts that
apply to multiple, possibly heterogeneous processor
instances become possible. Commands that explicitly
name processor instances can achieve interprocessor
communication.

The remainder of this section focuses on abstract
processor base classes from the infrastructure library that
support the machine code virtual processor abstraction.
Later sections on reflection and covariant extension show
how luxdbg supports the outer layers of Figure 2.

Figure 3 shows two luxdbg virtual processor
modeling hierarchies. The left side shows a class
inheritance hierarchy. Derived class InterfaceProcessor
inherits from Circuit, and class DriverProcessor inherits
from InterfaceProcessor. Circuit, InterfaceProcessor and
DriverProcessor are abstract classes from the
infrastructure library. They specify behavior and provide
machinery for reuse by processor-specificconcrete
classes. Figure 3 shows the place of processor-specific
concrete classes.

The right side of Figure 3 shows a processor object
containment hierarchy.A concrete DriverProcessor object
contains nested concrete InterfaceProcessor and Circuit

objects. C++ composition of modeling objects into
containment hierarchy supports building block-base
construction of processor and multiprocessor mode
Hierarchical composition is similar to netlist constructio
in circuit design languages such as VHDL [7]. Luxdbg’
C++ model composition is similar to structural VHDL
composition in the interconnection of circuit building
blocks.

Circuit represents an executable block of circuitry. A
modeler defines a block of circuitry by deriving a circuit
specific class from Circuit and implementing the circuit’
eval()function. Eval() reads circuit-specific input and stat
and writes circuit-specific output and state. Detaile
representation of input, state, and output are left up to t
modeler. They may be simple C integers. A Circuit clien
calls eval() after changing circuit inputs or state variable

InterfaceProcessorrepresents an instruction stream
processor. A modeler defines a specific instruction set
deriving an instruction-specific class from
InterfaceProcessor. InterfaceProcessor adds three m
mechanisms to those inherited from Circuit. First, a
instruction-specific processor always contains a regis
that the processor identifies as itsinstruction pointer(IP,
also known asprogram counter). With the IP comes
identification of aprogram memory. This memory holds
an executable stored program, and the IP gives the locat
of the next instruction to begin execution.

Second, class InterfaceProcessor contains aquery
tableand C++ query interface into it. The query interfac
supportsreflection. A modeler connects model state within
a specific InterfaceProcessor or contained Circuit—
signals, registers, pins and memory—to the que
interface by attaching named probes provided by t
infrastructure library to the contained state-bearin
objects. The simplest state-bearing object is a C integer. In

circuit

machine code processor

assembly code processor

procedural code processor

Tcl extended processor

Figure 2: Layers of luxdbg virtual machines



A
a

ts
on
el
e
es

x

n
or.
re
se

tive
y
s a
the

le
eive
cl

led
the query table the probe provides a symbolic name for its
state-bearing object (e.g., “r0”), type information (e.g.,
register, input pin, memory), and methods for client read
and write access. The query table also collects exception
messages from within an InterfaceProcessor for user
communication and methodical exception handling.

Third, class InterfaceProcessor provides anevent
trigger interface for simulation control, profiling and
debugger breakpoints. Method “virtual eventHandle
triggerEvent(unsigned long type, long count, long
*triggers)” provides basic breakpoint capability.
InterfaceProcessor supports a set of predefined eventtypes
such as TRIGGER_IP, which triggers an event on an
instruction pointer value. InterfaceProcessor also
implements IP range events for entering or leaving a
section of program, as well as data access events. Array
triggers supplies actual values for testing andcount
supplies their count. A specific class derived from
InterfaceProcessor can redefine triggerEvent() to handle
event types supported by a custom model or hardware
processor.

DriverProcessor represents a uniprocessor or
multiprocessor chip. In clock-based models
DriverProcessor controls global clock and reset logic.
DriverProcessor specifies abstract functionreset() that
resets a chip to its starting state, and abstract function

strobe() that advances the chip one state quantum.
modeler defines a specific processor chip by deriving
chip-specific class from DriverProcessor that implemen
reset() and strobe(). For a simple uniprocessor instructi
model, a modeler can derive an instruction-set mod
directly from DriverProcessor. The modeler codes th
eval(), reset() and strobe() functions and attaches prob
without using any hierarchical Circuit or
InterfaceProcessor objects.

The right half of Figure 3 illustrates a more comple
structure for a multiprocessor IC (a so-calledsuperchipor
system on a chip). Each InterfaceProcessor is really a
instruction-set processor derived from InterfaceProcess
They need not implement the same instruction set. Figu
3 also shows some connecting circuitry outside of the
processor cores but within the superchip. Each
InterfaceProcessor houses a query table for its respec
internal circuitry probes. The outer DriverProcessor, b
virtue of also being an InterfaceProcessor, also house
query table. The nested InterfaceProcessors appear in
query table of the outer DriverProcessor.

Each DriverProcessor object is a Tcl-accessib
processor instance. Nested InterfaceProcessors rec
hierarchical names starting with the outer processor’s T
name. Thus if a user constructs a superchip model cal
p1 that contains two nested processorsdsp and uC, the

Circuit

eval() = 0

InterfaceProcessor

instruction stream

DriverProcessor

reset() = 0
strobe() = 0

probe query table

DriverProcessor

InterfaceProcessor

Circuit Circuit

Circuit Circuit

InterfaceProcessor

Circuit Circuit

Figure 3: Virtual machine inheritance hierarchy (left) and containment hierarchy (right)

Circuit
event triggers

A concrete
class derived
from Circuit
implements
a circuit.

A concrete
class derived
from Interface
Processor
implements an
instruction set.

A concrete
class derived
from Driver
Processor
implements a
processor chip.



l
to
d
le

ted

d
m

ing
as
al

e
d

user can access the dsp by using namep1.dspand the
microcontroller by using name p1.uC. Each
InterfaceProcessor provides its own hierarchical scope for
named probes.

The virtual processor infrastructure classes solve
common problems so that modelers do not need to
reinvent methods for circuit modeling, instruction stream
debugging and multiprocessor synchronization. Modelers
can concentrate on unique architectural issues like
instruction set design, memory organization, interrupt
handling, etc. Modelers do not need to resort to source
code cut and paste or other ad hoc coding techniques to
implement a simulator or debugger to control their
models. Debugger “hooks” are an integral part of the
infrastructure itself.

3.2 Multithreaded processor example

To explore the efficiency of various digital signa
processor architectures, we have used luxdbg
experiment with both instruction set design an
implementation alternatives. Figure 4 shows an examp
model organization.

A DriverProcessor encapsulates a number of nes
InterfaceProcessors, each of concrete classContext(“ctx”
in Figure 4). A Context is a hardware-supported threa
unit. Each Context object supplies an application progra
instruction stream to shared, downstream process
circuits. A Context does not include shared circuits such
execution units, global instruction schedulers, glob
memory, or the control unit.

This model’s Memory and Register classes deriv
from infrastructure library classes infraMemory an

ctx00

ctx01

ctx[n]

Interface Processor

Circuit::
Fetch[fBW]

Circuit::
Decode[d]

Circuit::
Window[w]

Circuit::
Retire[lr]

Circuit::
Schedule/Issue[li]

Circuit::Global_Issue_Schedule[gi]

Circuit::
ExecutionUnit[e]

Circuit::Global_Retire[gr]

Exec0 Exec[e]

infraSgnl::
Regs[r]

infraMemory Circuit::
ControlStateMachine

Driver Processor

Figure 4: Multithreaded processor example



d
.
se

or

s a
out
rts

t
pt
on
ive
l.

ary

or
its

ties
pe
y
a
.,
ard
e
he
no
a

ers
n
a
n
al

/

t,
ed,

ol
to
ms
infraSgnl, respectively. These library classes provide
memory probes, memory access breakpoint triggers and
arbitrary-width signals. By using the built-in classes, a
luxdbg user can set breakpoints, view contents and modify
values. In addition, a probe connects to each
architecturally visible register. This processor model’s
classes are template-parameterized to allow for easy
porting to alternative register implementations. For
example,class ProbedRegisterFile <REG,
PROBE> becomes ProbedRegisterFile
<infraSgnl, infraSgnlMnDr> via C++ template
instantiation. The templates allow the register file’s signal
base type (infraSgnl here) and probe type (infraSgnlMnDr
here) to covary, providing alternative implementation
types without recoding. We use infraSgnl here because it
supports generic arithmetic on bit-fields of variable width.
This model contains 64-bit datapaths, and infraSgnl
provides arithmetic on data types not present in most C++
compilers. Using infraSgnl produces some simulation
overhead, but it provides for architectural design flexibility
and a reference implementation of the architecture that
both the hardware and fast instruction set model can use
for verification. After simulation has provided sufficient
architectural results to substantiate the efficiency of an
architecture, the same implementation classes can be
reused to implement a fast integer-based register file
simply by changing the register implementation type and
probe type of the template parameters.

To further demonstrate the flexibility of the built-in
classes, we have derived a memory class from
infraMemory that allows memory to be treated as a
stream. This has proved useful for loading programs,
transferring memory regions, and other house keeping
functions.

In addition to extending the built-in classes through
inheritance, we have designed these processor models to
be dynamically configurable. For example, the simulator
reads a configuration file during model construction that
provides the number of Contexts, the number of
instructions that may issue per Context, the latency of the
execution units, the number of execution units, the number
of instructions that may be retired globally and locally per
cycle, the type of scheduler to be instantiated, etc. The
generality of our processor models allows us to model
processors as simple as a single-threaded single-issue
controller through a full simultaneous multithreaded
processor.

This complex example shows that there are many
ways that we have attacked the reuse problem.
Infrastructure signals, circuit probes and memory objects
provide reusable building blocks. InterfaceProcessor
provides means for loading and debugging a program
running from a Context. DriverProcessor provides

coordination that requires only connection of containe
parts to manage global timing and circuit interaction
Every step of model design finds an assortment of reu
opportunities.

4. Design pattern: Build reflective entities

The last section showed how abstract process
infrastructure supports thecommonaspects of processor
modeling. This section onreflection[8] examines a pattern
that assists in capturingnot-commonaspects. Reflection is
a mechanism whereby a processor-neutral tool, such a
simulator / debugger, can query a processor model ab
its unique elements. Query-based configuration suppo
reuse of self-configuring tools, thereby attackingthe
extensibility problem.

Reflective software entities supply information abou
their custom abilities to run-time clients. Clients can ado
custom behaviors after querying reflective entities. Secti
3 discussed the InterfaceProcessor query tables that g
access to state-bearing objects within a mode
Infrastructure probes can attach to the most element
circuit signals. The monitor / control module of Figure 1
feeds this access through to the Tcl subsystem. A user
tool can query a machine code processor to discover
registers, pins, signals and memory, assorted proper
such as width, memory depth, and register arithmetic ty
(signed, unsigned, or floating-point), linear memor
hierarchies (e.g., sequences of ROM and RAM within
program memory), disjoint memory hierarchies (e.g
separate program memory and data memory in a Harv
Architecture machine), IO port identities, and finally, stat
values. InterfaceProcessor provides reflection into t
defining characteristics of a custom processor. There is
need for a modeler to write custom code in support of
debugger’s interaction with a processor model.

The assembly and procedural code processor lay
need additional symbol tables for entities found i
assembly and procedural programs loaded into
processor. When luxdbg loads a program into a
InterfaceProcessor, the loader defines a new virtu
machine around that processor. Theprocessor monitor /
control module supports this level of virtual machine.

Figure 5 gives an overview of the main monitor
control classes. MonitorControl is a client of
InterfaceProcessorand ProgramSymbols. There is one
MonitorControl object for each InterfaceProcessor objec
and when an assembly or procedural program is load
there is a ProgramSymbols object as well.

For a simple machine code processor, MonitorContr
could direct all processor access and control
InterfaceProcessor and DriverProcessor mechanis



”

t-
ry
l
n,
ts

g
s.

a
rom
e

in-
l.

, a
e
es

t
l

nt
d-
n
ft)

e

f
e
ery
s
in
a
r

discussed in Section 3. MonitorControl maintains tables of
breakpoints and profile triggers set by the Tcl client. It
uses InterfaceProcessor trigger methods to relay these to
its processor model. MonitorControl also supports nested
callbacks to Tcl on processorIO events, processor
breakpointsand processorexceptions. Tcl commands can
set callbacks on any of these events, and Tcl can
recursively query a model from within a callback
procedure. MonitorControl records all trigger-callback
pairs in an event table. All of these tables—break triggers,
profiling, and IO, breakpoint and exception callbacks to
Tcl—are available for query from the Tcl interface. Tcl
commands can query for the existence and values of any
virtual machine extensions they make via MonitorControl.

ProgramSymbols come into play when a symbolic
program is loaded. A ProgramSymbols object includes
code for loading memory and symbol table contents from
an object file. MonitorControl transfers memory contents
into an InterfaceProcessor’s memory, and symbol
information remains in its ProgramSymbols object. User
and GUI requests concerning symbol scope (e.g., set the
scope of symbol lookup to C function “foo()”), symbol
attributes (e.g., what is the type of symbol “foo” in this
scope), and symbol location (e.g., address in data memory
of C integer “foo”) go through MonitorControl to a
ProgramSymbols object. When MonitorControl needs to
examine or store a program variable’s value, it resolves the
variable to a storage or register location by consulting
ProgramSymbols, then it accesses the machine storage or
register via InterfaceProcessor. ProgramSymbols adds the
assembly and procedural reflection layers by making the
symbol information of a loaded object file fully visible to
MonitorControl clients such as Tcl. Monitor / control’s
debugging commands configure themselves to a specific
procedural program by consulting the procedural symbol
bindings of ProgramSymbols.

Finally, both Tcl and Tcl/Tk are reflective. Just about
anything that can be contained or added to Tcl/Tk is

available for query by built-in commands such as “info
[2,3].

The graphical user interfaceof Figure 1 gives one
example of the power of reflection. The GUI has no buil
in knowledge of any processor’s registers, memo
configuration, or IO capabilities. Instead it uses Tc
commands to query processor configuration informatio
then it configures widgets accordingly. The GUI adap
itself to each processor at run time.

The vendor simulator interfaceof Figure 1 provides
another example of the power of reflection for integratin
models into both behavioral and algorithmic simulation
A behavioral simulationmodels circuit behavior [7].
Behavioral simulation requires that pin information for
processor must be represented and translated to and f
an external vendor simulator’s data format. In Figure 6 th
vendor simulator interface attaches a luxdbg DSP16k p
level model to a behavioral simulation at the circuit leve
Algorithmic simulation is a much higher level of
modeling. The modeler runs a complete algorithm (e.g.
C function) on a target processor to determine th
functional behavior of that processor in a system that us
that algorithm. A modeler porting a floating-poin
algorithm for fast execution on a fixed-point digital signa
processor, for example, might run a ported fixed-poi
function on a DSP model to determine the effects of fixe
point implementation. In Figure 6 the vendor simulatio
interface attaches a Fast Fourier Transform function (f
in a block-diagram simulator to a fixed-point fft library
function loaded into a luxdbg processor model at th
procedural level.

Reflection assists integration into both types o
simulation environments. For behavioral simulation, th
vendor simulator interface uses InterfaceProcessor’s qu
table to obtain pin information for a processor. Thi
interface then maps that information to pin structures
the vendor simulator. The vendor simulator interface is
query-basedbridgebetween luxdbg debugging and vendo

MonitorControl

processor access
processor control
IO connections

ProgramSymbols

memory loader
symbol loader

symbol resolution
loader access

assembly entities
procedural semantics

InterfaceProcessor

Figure 5: An overview of processor monitor / control classes

0..1

1 1

1



ct
for

ss
file

ts
s

t,
ol
e
gh.
to
al

l
to

he
he
nts
t

d

fic

he
1.
al

on
g
-

circuit simulation.
For algorithmic simulation, the vendor simulator

interface queries ProgramSymbol information to
determine function addresses and parameter types and
positions. The algorithmic interface gives a vendor
simulator the ability to call functions on a target luxdbg
processor without worrying about the processor
architecture or compiler calling conventions. Luxdbg
reflection allows both LUxWORKS and third party tools
to connect easily to our processors.

Luxdbg’s GUI interface and vendor simulator
interface solve the extensibility problem by querying each
processor’s custom features. The GUI extends luxdbg by
providing an adaptive visual front end. Vendor simulators
extend themselves by loading models and luxdbg’s
extensive debugging capabilities.

5. Design pattern: Build a covariant
extensible system

Covariance is a pattern that allowsnot-common
processor dimensions to vary together. Object-oriented
covariance refers in a narrow sense to the ability of a
method’s parameters and return types to vary from base to
derived types as the class of the method varies from a base
to derived type [9]. Classes and member function
parameter typescovary.

Luxdbg’s covariance refers to the ability of processors
with extended capabilities to accept extended commands.
Recall from Section 3 that method
InterfaceProcessor::triggerEvent() can accept a number of
basic event types such as TRIGGER_IP, and that specific
models and hardware processors derived from
InterfaceProcessor can extend the range of legitimate
triggers. Trigger types covary with processor types.

Luxdbg’s most complex covariance relates to Figure 5
of Section 4. In addition to InterfaceProcessor, classes

ProgramSymbols and MonitorControl are in fact abstra
classes. Distinct ProgramSymbols-derived classes
ELF/DWARF, COFF, JavaTM ClassFile, and custom object
file formats are possible. ProgramSymbols symbol acce
methods are evolving to cover the set of language and
format-provided symbol capabilities that we anticipate.

Finally, each new instruction set processor core ge
its own MonitorControl-derived class. That class covarie
with unique capabilities in that core’s models, file forma
and embedded debugging hardware. MonitorContr
methods called from Tcl interpret their own command-lin
arguments. Tcl merely passes textual arguments throu
Consequently, if a MonitorControl-derived class wishes
extend a Tcl command, it redefines that command’s virtu
function. For example, if class DSPn derived from
MonitorControl monitors a processor with a specia
counter breakpoint capability—e.g., count every access
data memory in this range and trigger a breakpoint on t
1000th access—then DSPn could redefine t
setBreakpoint method to scan command line argume
for a “-count N” command switch. If DSPn::setBreakpoin
fails to find its command switch, it calls
MonitorControl::setBreakpoint to handle the comman
using default command parameters.

By using covarying virtual functions, a
MonitorControl-derived class can add processor-speci
command options without hard-wiring them into
MonitorControl. Covariance attacksthe extensibility
problem without disrupting underlying, generic code.

6. Conclusions

This paper has shown some of the intersections of t
main design patterns with the layered modules of Figure
Focusing on a clean distinction between an abstract virtu
processor and a specific processor implementati
maximizes the opportunities for reuse. Providin
reflection for all levels maximizes the potential for self

circuit

machine code processor

assembly code processor

procedural code processorbehavioral simulator

DSP16k pin
interface

algorithmic simulator

fft
DSP16k

fft
function
interface

gen filt

out

Figure 6: Vendor behavioral and algorithmic simulators attach via the vendor interface



on
re
al
d

.

configuring clients that use those levels. Covarying
processor-specific derived classes and processor-specific
commands gives ready access to processor enhancements
without perturbing generic base classes. The result has
been ready adaptation to new processor architectures and
tool feature requests as they arrive.

The biggest drawback in the current luxdbg
implementation is close temporal coupling between the
monitor / control and processor model modules of Figure
1. Monitor / control advances simulation state in a model a
single step at a time, then it queries the model for a
breakpoint event. The hardware interface, on the other
hand, installs breakpoints in a remote hardware processor.
It allows a hardware processor to run full speed across
many instructions until the hardware detects a breakpoint.
Only then does the hardware processor return a breakpoint
event to monitor / control.

Simulation speed will be accelerated and modularity
improved when we port this multi-step, high-speed
execution approach from the hardware interface into
processor modeling infrastructure. Models will run faster
because they can use internal, optimized mechanisms for
breakpoint detection. A model will return control to
monitor / control only when the model detects a
breakpoint. This change will unify monitor / control’s
view of processor models and processor hardware,
simplifying the interfaces beneath monitor / control.
Finally, we have plans to reuse this unified multi-step
debugger - processor interface to attach luxdbg to remote
processes running under operating systems. An operating
system process will appear as another flavor of avirtual
processor. We will organize models, processor hardware
and operating system processes behind a Virtual Processor
Software Component interface [10], with the upper three
layers of Figure 1 partitioned into a Networked Debugger
Software Component. Once we have partitioned luxdbg
into these two software components, it will be possible to

connect the debugger to a virtual processor anywhere
the Internet. We already have this capability for hardwa
processors, and the unification of the debugger - virtu
processor interface will extend it to distributed models an
processes.

7. References

1. S. Kumar, J. Aylor, B. Johnson and W. A. Wulf,The Codesign
of Embedded Systems: A Unified Hardware/Software
Representation. Boston, MA: Kluwer Academic Publishers,
1996.

2. John K. Ousterhout,Tcl and the Tk Toolkit. Reading, MA:
Addison-Wesley, 1994.

3. Brent B. Welch,Practical Programming in Tcl and Tk, Second
Edition. Upper Saddle River, NJ: Prentice Hall, 1997.

4. D. Parson, P. Beatty and B. Schlieder, “A Tcl-based Self-
configuring Embedded System Debugger.” Berkeley, CA:
USENIX, The Fifth Annual Tcl/Tk Workshop ‘97 Proceedings,
Boston, MA, July 14-17, 1997, p. 131-138.

5.DSP16000 LUxWORKS Debugger, luxdbg Version 1.4, Lucent
Technologies, December, 1997.

6. Richard P. Gabriel,Patterns of Software: Tales from the
Software Community. New York: Oxford University Press,
1996.

7. J. Bhasker,A VHDL Primer, Revised Edition. Englewood
Cliffs, NJ: Prentice Hall, 1995.

8. J. Vlissides, J. Coplien and N. Kerth, editors,Pattern
Languages of Program Design 2. Reading, MA: Addison-
Wesley, 1996.

9. Bertrand Meyer,Object-Oriented Software Construction,
Second Edition. Upper Saddle River, NJ: Prentice Hall, 1997

10. Clemens Szyperski,Component Software: Beyond Object-
Oriented Programming. New York: Addison-Wesley, 1998.


	A Framework for Simulating Heterogeneous Virtual Processors
	Abstract
	1. Introduction
	2. Luxdbg framework overview
	3. Design pattern: Build and extend abstract virtual processors
	3.1 Virtual processor infrastructure
	3.2 Multithreaded processor example

	4. Design pattern: Build reflective entities
	5. Design pattern: Build a covariant extensible system
	6. Conclusions
	7. References


