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Abstract

This paper describes theDELFT-JAVA processor and
the mechanisms required to dynamically translateJVM in-
structions intoDELFT-JAVA instructions. Using a form
of hardware register allocation, we transform stack bottle-
necks into pipeline dependencies which are later removed
using register renaming and interlock collapsing arithmetic
units. When combined with superscalar techniques and
multiple instruction issue, we remove up to 60% of trans-
lated dependencies. When compared with a realizable
stack-based implementation, our approach accelerates a
Vector Multiply execution by 3.2x for out-of-order execu-
tion with register reanaming and 2.7x when hardware con-
straints were considered. In addition, for translated instruc-
tion streams, we realized a 50% performance improvement
for out-of-order execution when compared with in-order ex-
ecution.

1 Introduction

We have designed the DELFT-JAVA processor[2]. An im-
portant feature of this architecture is that it has been de-
signed to efficiently execute JAVA Virtual Machine (JVM)
bytecodes. The architecture has two logical views: 1)
a JVM Instruction Set Architecture(ISA) and 2) a RISC-
based ISA. The JVM is a stack-based ISA with support
for standard datatypes, synchronization, object-oriented
method invocation, arrays, and object allocation[7]. An im-
portant property of JAVA bytecodes is that statically de-
terminable type state enables simple on-the-fly translation
of bytecodes into efficient machine code[4]. We utilize
this property to dynamically translate JAVA bytecodes into
DELFT-JAVA instructions. Because the bytecodes are stored
as pure JAVA instructions, JAVA programs generated by
JAVA compilers execute on a DELFT-JAVA processor with-
out modification. Programmers who wish to take advan-
tage of other languages which exploit the full capabilities

of the DELFT-JAVA processor may do so but require a spe-
cific compiler. Some additional architectural features in the
DELFT-JAVA processor which are not directly accessible
from JVM bytecode include pointer manipulation, Multi-
media SIMD instructions, unsigned datatypes, and round-
ing/saturation modes for DSP algorithms.

In Section 2 we give an architectural perspective of the
JAVA Virtual Machine. In Section 3 we describe how JVM
instructions are dynamically translated into DELFT-JAVA in-
structions including hardware support for executing depen-
dencies. In Section 4 we present the results of translated
bytecodes. In Section 5 we describe other related work. Fi-
nally, in Section 6 we summarize our findings and present
conclusions.

2 Java Virtual Machine Architecture

The JVM is a stack-based Instruction Set Architecture
designed to quickly transport programs across the Internet
and allow register poor processor architectures to efficiently
execute JAVA bytecodes. Instructions are not confined to
a fixed length however all of the opcodes in the JVM are
8-bits[7]. This allows for efficient decoding of instructions
while not requiring all instructions to be 32-bits or longer.

2.1 Memory Spaces

There are a number of storage spaces defined in the
JVM[7]. The Heap is an unbounded run-time allocated
space where all dynamically allocated objects are placed.
There is one heap and it is shared among all threads. The
heap is required to be garbage collected. The JVM spec-
ification does not require the heap to be a fixed size. If
the physical memory capacity of the heap is exceeded, an
OutOfMemoryError is thrown.

The Method Areais the location where the bytecode text
is loaded. It is a single space that is shared among all threads.
It contains the constant pool, field and method data, and the
code for methods and constructors. According to the JVM



specification, it may be of fixed or variable size. The mem-
ory area is not required to be contiguous. It is restricted to
�
�� bytes per method. If enough memory can not be allo-

cated, an OutOfMemoryError is thrown.
The Constant Poolis a per-class or per-interface runtime

data area that contains numeric literals and symbolic names
of classes that are dynamically linked. The JAVA specifica-
tion states that this area is allocated from the method area’s
space and has a maximum size of ��� entries per class. The
constant pool is created when a class or interface specified
in a JAVA class file has successfully been loaded. If the
physical memory capacity of the method area is exceeded,
an OutOfMemoryError is thrown. Each index into the
Constant Pool references a variable length structure.

2.2 Working Store

The primary JVM working store is a stack. It consists of
32-bit words placed as a variable-length, variable-location
segment in memory[7]. The Operand Stackis logically
part of a JavaFramethat is allocated on method invocation.
Most instructions operate on the current frame’s operand
stack and return results to it. The operand stack is also used
to pass arguments to methods and receive method results. A
64-bit datatype is considered to occupy two stack locations.
All operations on the operand stack are strongly typed and
must be appropriate to the type being operated upon. Cur-
rently the size of the operand stack is restricted to �

�� loca-
tions due to restrictions on the class file.

The Local Variables space is logically part of the
JavaFramethat is allocated on method invocation. There
are up to �

�� local variable locations per method invocation.
Each location is 32-bits wide and is placed as a fixed-length,
variable-location segment in memory. A 64-bit datatype is
considered to take two local variable locations. The local
variables hold the formal parameters for the method and
partial results during a computation.

2.3 JVM Datatypes

Operations in the JVM are strongly typed. Since there
are only 256 opcodes available, this results in the trade-
off that nearly all arithmetic operations are performed as
integers or IEEE-754 floating point. An interesting prop-
erty of the JVM is that integer arithmetic operations do
not indicate overflow or underflow [7]. There are also load
and store instructions which move values from memory
spaces to and from the operand stack. In addition to stan-
dard operations, there is direct support for method invo-
cation, synchronization, exceptions, and arrays. There are
also two variable length instructions - tableswitch and
lookupswitch.

Figure 1. Indirect Register Access

3 Dynamic Translation

The DELFT-JAVA architecture supports the same basic
datatypes as the JVM. We dynamically translate JVM in-
structions into DELFT-JAVA instructions by providing indi-
rect access into the register file. Figure 1 shows a set of
index registers. Each index (e.g. ix, iy, and it) is 5-bits
wide with separate entries for each source and destination
operand. Every indirect operation accesses the index regis-
ter file to obtain the last previously allocated register. An
immediate field within the DELFT-JAVA instruction format
can be used to specify offsets from the original index value.
In addition, a pre/post-increment field specifies whether the
index uses a pre-incremented or post-incremented value to
resolve the register reference. For most translated JAVA

instructions this can be inferred from the operation. For
DELFT-JAVA general indirect instructions, which are use-
ful in vector operations, it is beneficial to directly specify a
pre or post increment. Once the operands are transformed
from an indirect address to a direct register reference, they
are placed in the instruction window for dispatch. If an over-
flow or underflow of the register file is detected by the hard-
ware, the offset register which maps the register file into
main memory must be adjusted.

In addition, the register file may be configured to act as
a memory cache. In this case, a base register indicates the
starting memory address being cached. Valid and modified
bits control the write-back to memory when overflow or un-
derflow is detected.

To illustrate how these operations are performed, con-
sider the following examples: 1) the standard RISC instruc-
tion add r2,r0,r1. The add mnemonic specifies the
operation, r2 is the destination (target) register. Registers
r0 and r1 are the source operands. When no type is ex-



Figure 2. Indirect Register Mapping

plicitly specified, a w�� (signed integer 32-bits) type is im-
plied. 2) the indirect instruction addi [idx7] ++it,
2-ix, iy specifies that an indirect add will occur. The
idx[7] implies that the 8-th index register is to be selected.
The source operand 2+ix implies that an immediate value
of 2 (which is specified in the instruction format) is pre-
incremented with the contents of idx[7][ix] to determine
the source operand register. 3) The instruction storei
[idx7] base0 + #3, it+1 specifies that an indirect
memory store operation is performed. The target operand is
a memory location addressed by an architected base regis-
ter base0 with an immediate displacement of 3. To calculate
the source operand, the value contained in idx[7][it] is used.
Since it+1 contains the +1 on the right hand side of it, it im-
plies that idx[7][it] is post-incremented by 1. For JVM byte-
codes, the pre/post increment values can be implied from the
JVM instruction. Additionally, as shown in Figure 1, the
index ”it” is used as the offset for all operands when the
DELFT-JAVA processor is in JAVA translation mode.

Figure 2 shows the indirect mapping translation. The re-
solved register address from Figure 1 is used as an index into
the register file. This address is also used as a displacement
which maps the register file into Main Memory. A 32-bit
base address is set by the DELFT-JAVA processor to point to
the starting memory location. A 32-bit offset is added to pro-
vide the current mapping of the register file to the stack main
memory. If the amount of required stack storage exceeds the
register file limit, a signal is sent to the DELFT-JAVA pro-
cessor and the offset is adjusted as needed. The tags control
whether all the data is written back on an overflow or under-
flow. It is possible to be continually updating main memory
in the background while bytecode execution proceeds.

3.1 Example Translation

We now describe the translation of a vector multiply pro-
gram. A rudimentary JAVA program reads an element of a
vector from an array a[], multiplies it with a fully disam-
biguated array b[], and stores the result in another indepen-
dent array c[]. The JAVA language specifies that array mem-
ory is allocated on the heap. The operations take place on
an element by element basis. When compiled with -O opti-
mization using Sun’s Java JDK 1.1, the inner loop bytecode
(e.g. c[i]=a[i]*b[ig) produced 10 instructions. To be able to
load a single element from an array, the address of the ar-
ray is pushed onto the stack followed by the index to load.
Prior to entering the inner loop each array was allocated on
the heap. As a result of executing the instruction ”newar-
ray int”, the heap address where the integer array was allo-
cated is returned on the stack. This address is immediately
stored into a Local Variables location (e.g. LV[1], LV[2],
and LV[3] for a[], b[], and c[] respectively).

Program 1 Translation Bytecode.

Opc Indirect Register
load [idx7] –it, base LV + #3
load [idx7] –it, base LV + #5
load [idx7] –it, base LV + #1
load [idx7] –it, base LV + #5
load [idx7] ++it, ++it + it
load [idx7] –it, base LV + #2
load [idx7] –it, base LV + #5
load [idx7] ++it, ++it + it
mpy [idx7] ++it, it, ++it
store [idx7] 2+it + 1+it, it

Program 1 shows the vector multiply inner loop bytecode
translated into DELFT-JAVA indirect instructions. Because
instructions are being translated from JAVA, all operand
indirect references are with respect to the target location.
When a program is about to begin execution of JAVA byte-
codes, a ”branchJVM” instruction is executed by a DELFT-
JAVA processor. As shown in Figure 1, this configures
the IsJava control switch to use the ”it” reference. The
”base LV” name is a symbolic name for one of the DELFT-
JAVA base registers. As shown in Program 1 line 1, loading
a JAVA array reference from a local variable is translated as
an indirect load with base register plus displacement. Notice
that after the translation most of the type information con-
tained within the JAVA instruction is removed. It is there-
fore important for a separate program to verify the bytecodes
prior to execution if security is an issue.



Program 2 Final DELFT-JAVAInstructions.

Opc Direct Register
// initial value of idx[7][it] = 24

i� load r23� Mem[base LV + #3]
i� load r22� Mem[base LV + #5]
i� load r21� Mem[base LV + #1]
i� load r20� Mem[base LV + #5]
i� load r21� Mem[r21 + r20]
i� load r20� Mem[base LV + #2]
i� load r19� Mem[base LV + #5]
i� load r20� Mem[r20 + r19]
i� mpy r21� r20 * r21
i�	 store Mem[r23 + r22]� r21

Program 2 shows the operation code mnemonic and the
final resolved instruction. For this example, we assume that
the value contained in idx[7][it] is 24. Of notable observa-
tion is the large number of Memory accesses required. How-
ever, it should be noted that most of these are not global
memory accesses but rather Local Variable accesses which
may be cached locally or even stored in small buffer. The
JAVA language currently allows up to �

�� local variables.
Implementations which do not store this much memory lo-
cally (e.g. when the Local Variables are allocated to regis-
ters) must dynamically allocate spill memory to accommo-
date a particular program’s requirements.

3.2 Translated Instructions

In order to perform JAVA translation, the DELFT-JAVA

machine has a number of special registers which control
the dynamic translator. When the processor transitions to
JAVA-mode using a branchJVMinstruction, the program-
mer views the processor as a JAVA Virtual Machine and
translation is automatically enabled. In any of the privileged
modes, the translator is disabled. When dynamic transla-
tion is enabled, the register file caches the top of the JAVA

stack. This is accomplished by using architected base and
offset/displacement registers within the DELFT-JAVA archi-
tecture. During normal JAVA execution, the register file can
cache up to 32 stack entries. In addition, the actual top of the
stack may be offset from the memory location that points to
it to allow for delayed write-back. The JAVA language spec-
ifies that in the absence of explicit synchronization, a JAVA

implementation is free to update the main memory in any
order[5]. Therefore, each context may maintain a set of reg-
ister file status bits that allow a more balanced utilization of
bandwidth constrained resources.

To ensure proper sequencing of instructions during JAVA

translation, all instructions are assumed to be stored as JVM
bytecode. To transition to kernel-mode, a special reserved
JVM instruction is used. The JVM specification states

that 3 opcodes will permanently be reserved for implemen-
tation dependent purposes[7]. The DELFT-JAVA processor
utilizes one of these instructions to transition a context be-
tween JVM execution and general DELFT-JAVA execu-
tion. When the context is executing in kernel-mode, instruc-
tions are assumed to be stored as 32-bit DELFT-JAVA in-
structions. This allows the branch decode logic to operate
correctly without modifying JAVA compilers while compil-
ers specific to the DELFT-JAVA architecture can take advan-
tage of DELFT-JAVA specific features. Additionally, it is not
necessary for all DELFT-JAVA instructions to execute in ker-
nel mode. A security scheme may be implemented using a
supervisor invoked transition to native user-mode DELFT-
JAVA execution.

anewarray invokeinterface� multianewarray
arraylength invokespecial new
athrow invokestatic newarray
checkcast invokevirtual putfield
getfield jsr w� putstatic
getstatic lookupswitch� tableswitch
goto w� monitorenter wide
instanceof monitorexit �(traps)

Table 1. Instructions with Special Support.

3.3 Non-translated Instructions

Primarily, we dynamically translate arithmetic and data
movement instructions. In addition to the translation pro-
cess, the DELFT-JAVA architecture provides direct support
for a) synchronization, b) array management, c) object man-
agement, d) method invocation, e) exception handling, and
f) complex branching operations. The JAVA instructions
shown in Table 1 have special support in the DELFT-JAVA

architecture. These instructions are dynamically translated
but only the parameters which are passed on the stack are ac-
tually translated. The high-level JVM operations are trans-
lated to equivalent high-level operations in the DELFT-JAVA

architecture. In addition, four instructions which are greater
than the 32-bit DELFT-JAVA instruction format width trap.

3.4 Enhancing Performance

Accelerating the JVM interpreter is only one aspect
of JAVA performance improvement implemented in the
DELFT-JAVA processor. We utilize a number of techniques
including pipelining, load/store architecture, register renam-
ing, dynamic instruction scheduling with out-of-order issue,
compound instruction aggregation, collapsing units [11],



branch prediction, a link translation buffer [3], and standard
register files. We selectively describe some of these mecha-
nisms.

A common problem with stack architectures is that the
stack may become a bottleneck for exploiting instruction
level parallelism. Since the results of operations typically
pass through the top of the stack, many interlocks are gen-
erated in the translated instruction stream. Register renam-
ing allows us to remove false dependencies in the instruc-
tion stream. In addition, an interlock collapsing unit can be
used to directly execute interlock dependencies[11]. After
translation the instructions are placed in an instruction win-
dow. Superscalar techniques are used to extract instruction
level parallelism from the instruction stream. When com-
bined with register renaming, improved levels of parallelism
may be achieved.

Model Renaming Issue L/S units Latency
IS No inorder � 1
IX No inorder � 1
IR Yes ooo � 1
PS No inorder � 4
PX No inorder � 4
PR Yes ooo � 4
BR Yes ooo 2LV/2H 4

Table 2. Model Characteristics

4 Results

We describe seven machine models and report on the rel-
ative performance of these models. A summary of the ma-
chine characteristics is shown in Table 2. The Ideal Stack
(IS) model does not attempt to remove stack bottlenecks nor
does it include pipelined execution. It assumes all instruc-
tions including memory operations complete in a single cy-
cle. The Ideal Translated (IX) model uses the translation
scheme described in Section 3. It also includes multiple in-
order issue capability but no register renaming. The Ideal
Translated with Register Renaming (IR) model includes out-
of-order execution but with unbounded hardware resources.
In addition to the ideal machines, we also calculated the per-
formance on a more practical machine. The Pipelined Stack
(PS) model assumes a pipeline latency of 4 cycles for all
memory accesses to the Local Variables or Heap memory.
The Pipelined Translated (PX) model and the Pipelined with
Register Renaming (PR) include the same assumptions for
memory latency but are equivalent to the IX and IR mod-
els in other respects. The final experiment looked at the ad-
ditional constraint of bounded resource utilization. We al-
lowed two concurrent accesses to the Local Variable and

Heap memories and maintained a four cycle latency for each
memory space.

Model Peak Issue IPC Speedup
IS 1 1.0 3.5
IX 4 1.7 5.8
IR 6 2.5 8.8
PS 1 0.3 1.0
PX 4 0.6 2.2
PR 6 0.9 3.2
BR 2 0.8 2.7

Table 3. Machine Performance

Table 3 shows the relative performance of each of the
models and a summary of instructions issued, peak issue
rate, and overall speedup. We chose the Pipelined Stack
as the basis for comparison since it is a potentially realiz-
able implementation. We note that compared with a reason-
able implementation, the ideal stack (IS) model is 3.5 times
faster than the PS model. When we compare the IX model
with the IS model, we were able to reduce the stack bottle-
necks by 40%. When register renaming was also applied in
the IR model, the stack bottlenecks were reduced by 60%.
When bounded resources constrained the issue capacity of
the BR model, the performance still was 3.2x better than the
PS model. In addition, register renaming with out-of-order
execution successfully enhanced performance by about 50%
in comparison with the same model characteristics but with
in-order execution.

5 Related Work

Hardware approaches to improving JAVA performance
have been proposed. Sun’s picoJavaimplementation di-
rectly executes the JVM Instruction Set Architecture but
incorporates other facilities that improve the system level
aspects of JAVA program execution[9]. The picoJava chip
is a stack-based implementation with a register-based stack
cache. Support for garbage collection, instruction optimiza-
tion, method invocation, and synchronization is provided.
Sun states that this provides up to 5x performance improve-
ment over JIT compilers.

Others have also looked at similar methods of remov-
ing stack bottlenecks. Dynamic scheduling using the Toma-
sulo algorithm is described in [10]. We first proposed our
mechanism in 1997[2]. Here we extend our previous work
to quantify the performance effects of our approach. Both
Sun[9] and Chang[1] describe a stack folding technique.
Stack folding is the ability to detect some instructions with
true data dependencies in the instruction stream and execute



them as a single compound instruction. We described a sim-
ilar technique using collapsing arithmetic units[2, 11].

More recently, a scheme called Virtual Registers was
introduced[6]. This scheme is similar to the way in which
we handle register references. Their method allows arith-
metic instructions to get source operands from a virtual reg-
ister which may reference stack operands below the top of
the stack. As with the DELFT-JAVA processor, this allows
them to issue multiple instructions in parallel. They have
shown an effective IPC of 2.89 to 4.01. Our technique first
published in 1997 gives results consistent with their model.

6 Conclusions

We have presented our approach to JAVA hardware ac-
celeration using dynamic instruction translation. In hard-
ware assisted dynamic translation, JVM instructions are
translated on-the-fly into the DELFT-JAVA instruction set.
The hardware requirements to perform this translation are
not excessive when support for JAVA language constructs
are incorporated into the processor’s ISA. This technique al-
lows application level parallelism inherent in the JAVA lan-
guage to be efficiently utilized as instruction level paral-
lelism while providing support for other common program-
ming languages such as C and C++. We have shown that our
dynamic translation technique (which is a form of register
allocation) is useful in removing up to 40% of stack bottle-
necks. When register renaming is combined with our trans-
lation technique, upwards of 60% of stack dependencies can
be removed. Our technique effectively converts stack de-
pendencies into pipeline hazards which are later removed
from the instruction stream using superscalar techniques.
We note that the translation of JAVA bytecodes produces a
large amount of memory operations. Fortunately, many of
these are to independent memory spaces or local data which
may be efficiently stored in local registers or buffers. Reg-
ister renaming along with out-of-order execution is partic-
ularly important for balancing the scheduling of Loads and
Stores with arithmetic operations.

Our current research is looking at combining the stack
offset update logic with the out-of-order reorder buffer. In
addition, compiler techniques such as software pipelining
which operate on machine independent JVM bytecodes may
allow more efficient use of higher-order interlock collaps-
ing ALUs (e.g. 4-1 or 5-1 ALUs). It is also possible using
register renaming to allow more physical registers than ar-
chitected DELFT-JAVA registers. Some studies have shown
that up to 98% of typical programs use less than 32 stack
entries[8]. Therefore the addition of extra physical registers
may not be warranted. Other more recent techniques such as
value prediction may also be important in JVM execution.
This is particularly true of Local Variable values which often
return the address of an object allocated on the heap.
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