
Instruction Set Extensions for Software Defined Radio on a
Multithreaded Processor

Suman Mamidi, Emily R. Blem,
Michael J. Schulte

University of Wisconsin-Madison
1415 Engineering Dr.

Madison, WI 53706, USA

mamidi@cae.wisc.edu

John Glossner, Daniel Iancu, Andrei
Iancu, Mayan Moudgill, Sanjay Jinturkar

Sandbridge Technologies
1 North Lexington Avenue, 10th Floor

White Plains, NY 10601, USA

jglossner@sandbridgetech.com

ABSTRACT
Software defined radios, which provide a programmable solu-
tion for implementing the physical layer processing of multi-
ple communication standards, are widely recognized as one
of the most important new technologies for wireless com-
munication systems. Emerging communication standards,
however, require tremendous processing capabilities to per-
form high-bandwidth physical-layer processing in real time.
In this paper, we present instruction set extensions for sev-
eral important communication algorithms including convo-
lutional encoding, Viterbi decoding, turbo decoding, and
Reed-Solomon encoding and decoding. The performance
benefits of these extensions are evaluated using a supercom-
puter class vectorizing compiler and the Sandblaster low-
power multithreaded processor for software defined radio.
The proposed instruction set extensions provide significant
performance improvements, while maintaining a high degree
of programmability.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and Application-based Systems—Real-time and embedded sys-
tems

General Terms
Design and Performance

Keywords
Instruction set extensions, digital signal processor, multi-
threading, software defined radio, forward error correction,
Reed-Solomon coding, Viterbi decoding, turbo decoding,
and convolutional encoding.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’05, September 24–27, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-149-X/05/0009 ...$5.00.

1. INTRODUCTION
Traditional wireless communication systems have typi-

cally been implemented using custom hardware solutions [7].
Chip rate, symbol rate, and bit rate co-processors are of-
ten coordinated by programmable digital signal processors
(DSPs), but the DSPs do not typically participate in physi-
cal layer processing. Even when supporting a single commu-
nication system, the hardware development cycle is onerous
and often requires multiple chip redesigns late in the cer-
tification process. When multiple communication systems
must simultaneously be supported, silicon area and design
validation are major inhibitors to commercial success.

Software Defined Radios (SDRs), which provide a pro-
grammable platform for implementing the physical layer pro-
cessing of multiple communication standards, are widely rec-
ognized as one of the most important new technologies for
wireless communication systems [13]. A SDR platform ca-
pable of dynamically reconfiguring itself to implement mul-
tiple communication standards enables elegant reuse of sili-
con area and dramatically reduces time to market through
software modifications, instead of time-consuming hardware
redesigns. SDRs also allow wireless devices to be reconfig-
ured through software updates to implement emerging wire-
less communication standards, thereby decreasing product
development time.

Although SDRs offer many benefits, they require extremely
high-performance processors to implement real-time physical-
layer processing for high-bandwidth communication systems.
For example, as noted in [6], physical layer processing for
a WCDMA uplink receiver requires more than 5.5 billion
operations per second. Consequently, innovative architec-
tural techniques are needed to provide high-performance,
low-power programmable processors for SDR.

Sandbridge technologies has developed the SB3010, a SDR
baseband processor that performs physical layer processing
in software for a variety of communication systems includ-
ing 2Mbps WCDMA, 11Mbps IEEE802.11b, GSM/GPRS,
and GPS [14]. The SB3010 consists of four multithreaded
Sandblaster Processor cores, an ARM9 applications proces-
sor, on-chip instruction caches and data memories, a pro-
grammable RF interface, and several peripheral interfaces.
Each Sandblaster Processor core provides over two billion
multiply-accumulate (MAC) operations per second and fea-
tures powerful compound instructions, Single Instruction
Multiple Data (SIMD) vector operations, and simultaneous
execution of up to eight hardware threads.

Data Memory
64KB

8-Banks

Data Memory
64KB

8-Banks

Data Memory
64KB

8-Banks

Data Memory
64KB

8-Banks

Data Memory
64KB

8-Banks

Data Memory
64KB

8-Banks

Data Memory
64KB

8-Banks

Data Memory
64KB

8-Banks

I-Cache
64KB

64B Lines
4W (2-Active)

I-Cache
64KB

64B Lines
4W (2-Active)

I-Cache
64KB

64B Lines
4W (2-Active)

I-Cache
64KB

64B Lines
4W (2-Active)

SIMDIQ

I-Decode

DIR
LRU Replace

Bus/Memory
Interface

Instruction Fetch and
Branch Unit

Integer and Load/
Store Unit

SIMD Vector UnitSIMD Vector UnitSIMD Vector UnitSIMD Vector Unit

Figure 1: Sandblaster processor.

In this paper, we present instruction set extensions for
software defined radio and evaluate the performance bene-
fits of these extensions using a supercomputer-class vector-
izing compiler and the Sandblaster multithreaded proces-
sor. These instruction set extensions significantly improve
the performance of compute-intensive communication algo-
rithms including convolutional encoding, Viterbi decoding,
turbo decoding, and Reed-Solomon encoding and decoding.
Due to the importance of these algorithms in SDR, they
are required on radios that implement the Department of
Defense’s Joint Tactical Radio System Software Communi-
cation Architecture (JTRS SCA) with Specialized Hardware
Components [10]. Improving the performance of these algo-
rithms enables simultaneous processing of multiple commu-
nication algorithms at very high data rates.

This paper is organized as follows: Section 2 gives an
overview of the Sandblaster Multithreaded Processor. Sec-
tion 3 describes our methodology for determining and eval-
uating new operations. Section 4 presents the algorithms,
instruction set extensions, and potential hardware imple-
mentations. Section 5 summarizes the speedups due to the
proposed instruction set extensions, along with area and de-
lay estimates for potential hardware implementations. Sec-
tion 6 discusses related work on instruction set extensions
for wireless communication systems. Section 7 summarizes
the paper. The main contributions of this paper are (a) the
introduction of several instruction set extensions and hard-
ware designs for software defined radio, and (b) the evalu-
ation of the performance benefits from the instruction set
extensions on a compound-instruction, multithreaded pro-
cessor with SIMD vector operations.

2. SANDBLASTER PROCESSOR
The Sandblaster Processor utilizes a unique combination

of techniques including hardware support for multiple threads,
compound instructions, SIMD vector operations, and in-
struction set support for Java code [14]. The Sandblaster
Processor provides substantial parallelism and throughput
for high-performance SDR, while maintaining fast interrupt
response, high-level language programmability, and low power
dissipation. Figure 1 shows a block diagram of the Sand-
blaster Processor. The processor is partitioned into three
units; an instruction fetch and branch unit, an integer and
load/store unit, and a SIMD vector unit.

The Sandblaster Processor conserves program memory
through the use of powerful 64-bit compound instructions
that issue up to three compound operations each cycle. To
simplify instruction decoding and reduce hardware require-

L0: lvu %vr0, %r3, 8

|| vmulreds %ac0, %vr0,%vr0,%ac0

|| loop %lc0, L0

Figure 2: A 64-bit compound instruction.

T0 T7 T2 T5 T4 T3 T6 T1

Figure 3: Token Triggered Threading.

ments, certain operations are not specifiable within the same
compound instruction. Figure 2 shows a 64-bit compound
instruction with three compound operations. This instruc-
tion implements the inner loop of a vector sum-of-squares
computation. The first compound operation, lvu, loads the
vector register, vr0, with four 16-bit elements and updates
the address pointer, r3, to the next element. The vmulreds

operation reads four 16-bit elements from vr0, multiplies
each element by itself, saturates each product, adds all four
saturated products plus a 40-bit accumulator register, ac0,
with saturation after each addition, and stores the result
back in ac0. The loop operation decrements the loop count
and branches to L0 if the result is not zero. Since our
proposed instruction set extensions are implemented in the
SIMD vector unit, they can be part of compound instruc-
tions that also include branch, integer, or load/store opera-
tions.

The Sandblaster processor uses a unique form of inter-
leaved multithreading, called Token Triggered Threading
(T 3), which is illustrated in Figure 3. With T 3, all threads
can be simultaneously executing instructions, but only one
thread may issue an instruction on a cycle boundary [14].
This constraint is also imposed on round-robin threading.
What distinguishes T 3 is that each clock cycle a token in-
dicates the subsequent thread that is to issue an instruc-
tion. Thread ordering may be sequential (e.g. round robin),
even/odd, or based on other communication patterns. Com-
pared to Simultaneous Multithreading (SMT) [4], T 3 has
much less hardware complexity and power dissipation since
the method for selecting threads is simplified, only a single
compound instruction issues each clock cycle, and depen-
dency checking hardware is eliminated. Compared to tradi-
tional interleaved multithreading, it provides higher perfor-
mance through compound instructions, SIMD vector opera-
tions, and greater flexibility in scheduling threads. The cur-
rent implementation of the Sandblaster Processor supports
up to eight simultaneous threads of execution per processor
core.

Figure 4 shows a block diagram of the SIMD vector pro-
cessing unit (VPU), which consists of four vector processing
elements (VPEs), a shuffle unit, a reduction unit, and an ac-
cumulator register file. The four VPEs perform arithmetic
and logic operations in SIMD fashion on 16-bit, 32-bit, and
40-bit fixed-point data types. High-speed 64-bit data busses
allow each VPE to load or store 16 bits of data each cycle
in SIMD fashion. Support for SIMD execution reduces code
size, as well as power consumption from fetching and de-
coding instructions, since multiple sets of data elements are
processed with a single instruction.

Accumulator Data

Load Data

Store Data

VPE0

Shuffle
Unit

Reduction Unit

Accumulator
Register File

VPE2

VPE1

VPE3

Figure 4: SIMD vector processing unit

Most vector operations have eight pipeline stages once
they are fetched; Instruction Decode, Register Read, Exe-
cute1, Execute2, Execute3, Execute4, Transfer, and Write
Back. Since there are eight cycles between when consecutive
instructions issue from the same thread, results from one in-
struction in a thread are guaranteed to be written back to
the register file by the time the next instruction from the
same thread is ready to read them. Thus, the long pipeline
latency of the VPEs is effectively hidden, and no data de-
pendency checking or bypass hardware is needed. Conse-
quently, our instruction set extensions can have up to four
execution stages without significantly impacting the proces-
sor pipeline. This allows the extensions to be fairly complex
since their latency is hidden by the multithreaded pipeline.

3. DESIGN METHODOLOGY
Our basic methodolgy for selecting and analyzing instruc-

tion set extensions for software defined radio consists of the
following steps:

1. Select representative benchmark applications for soft-
ware defined radio. In this paper, we focus on For-
ward Error Correction (FEC) algorithms due to their
widespread use in wireless communcication systems
and their high computational requirements. For exam-
ple, as noted in [6], a Viterbi decoder for an 802.11a
wireless LAN receiver with 64-State Quadrature Am-
plitude Modulation requires over 6.7 billion operations
per second. Since FEC coding is performed on all
transmitted and received data, multiple threads may
be utilized for FEC coding.

2. Profile each application to determine portions of the
code that use the most cycles. Each application, which
is written in C, is compiled with full compiler optimiza-
tions including vectorization, loop unrolling, software
pipelining, code motion, function inlining, and peep-
hole optimizations [18]. Portions of the code that use
the most cycles are then identified using the Sand-
bridge Software Tools [8].

3. Determine suitable operations for speeding up portions
of the code that use the most cycles. In some cases, it
is useful to introduce multiple operations to implement
a particular algorithm. Consistent with existing Sand-
blaster vector operations, our new operations have up
to three vector source operands and one vector desti-
nation operand. As described in Section 2, the new
operations can have up to four execution cycle with-
out significantly impacting the processor pipeline. The
new operations are designed to be flexible enough to
support different implementations of the target appli-
cations.

4. Rewrite each application with the new operations pro-
vided as intrinsics and rerun the simulations to deter-
mine the new cycle count for each application. This
process is simplified by the Sandblaster architecture
Description Language (SaDL) [8]. SaDL provides an
abstraction of the Sandblaster architecture and imple-
mentation into a single database, which guides the
generation and optimization of the Sandbridge tool
chain. With this approach, the application uses the
original C code with minor replacements of portions
of the C code with intrinsics for the new operations.
The compiler then optimizes and schedules the entire
application, which lets the new operations be included
in compound instructions and undergo the same op-
timizations as other operations. Using our technique
of semantic analysis described in [18], the Sandblaster
compiler can be extended to automatically generate
the new operations from the original C code, without
the need to rewrite the code to use intrinsics.

5. Implement potential hardware designs for the new op-
erations in Verilog. Each design is simulated to en-
sure correct performance and then synthesized using
Synopsys Design Compiler and LSI Logic’s glfxp 0.11
micron CMOS standard cell library to obtain area and
delay estimates.

4. ALGORITHMS, INSTRUCTION SET EX-
TENSIONS, AND HARDWARE DESIGNS

In this section, we (a) briefly describe various Forward
Error Correction (FEC) algorithms that are frequently used
in wireless communcation systems, (b) provide instruction
set extensions to speedup these algorithms, and (c) suggest
hardware designs to implement the proposed instruction set
extensions. The FEC encoding algorithms add redundancy
to the transmitted signal to support error detection and cor-
rection by an FEC decoder at the receiver. Further details
on FEC algorithms are given in [16].

4.1 Convolutional Encoder
Convolutional encoding, an FEC encoding technique used

in GSM/GPRS and other communication standards, is well
suited for trasmitting data over noisy channels [3]. Convolu-
tional encoders are often implemented in hardware using a
shift register and combinational logic that performs modulo-
2 additions (i.e., exclusive-or (XOR) operations).

Convolutional encoders have three main parameters; Rate,
Constraint Length, and Taps. The serial convolutional en-
coder shown in Figure 5 is called a 1/2 Rate, 3,7,5 Encoder.
The 1/2 Rate indicates that the encoder produces two out-
put bits for each input bit. In this example, the encoder

FF FF

+

+

Data In
K bits/sec

Data Out
2K bits/sec012

Rate = k/2k = 1/2
Input Length = 1
Output Length = 2 Constraint Length = 2

7 5

Taps Direction of
Data Flow

Figure 5: Sample convolutional encoder.

has an Input Length of 1 and an Ouput Length of 2. The
Constraint Length for this encoder is 3, since the encoder
examines three bits at a time. The Taps, 7 and 5, represent
the code generator polynomials, which when read in binary
(1112 and 1012) correspond to the shift register connections
to the upper and the lower module-2 adders, respectively.
Although the convolutional encoder shown in Figure 5 has
small hardware requirements its serial implementation and
lack of programmability make it ill-suited for software de-
fined radio.

A convolutional encoder is fully-programmable if all the
parameters defined above are programmable. Traditional
software implementations of fully programmable convolu-
tional encoders are computationally expensive since they
have several shifts, logic operations, and conditional branches.
Our instruction set exentensions provide two new operations
for performing fully-programmable convolutional encoding;
update shifter and convolve.

The update shifter operation is a SIMD vector operation
that corresponds to right shifting a specified number of data
bits into a shift register, where both the number of data bits
shifted in and the size of the shift register can vary. This
operation uses three input operands, Data In, (Constraint
Length, Input Length)1 and Current State, to produce one
output operand, Next State. The update shifter operation
right shifts Data In of length Input Length into Current
State of length Constraint Length to produce the Next State.

Figure 6 shows a hardware design that implements the up-
date shifter operations, when Input Length and Constraint
Length can vary from one to eight bits. The design con-
sists of three barrel shifters. The first aligns the Current
State based on the Constraint Length. The second inserts
the Data In bits based on the Input Length. The third
right shifts based on the Constraint Length to produce the
Next State. Larger maximum Input Lengths and Constraint
Lengths can be supported by increasing the size of the barrel
shifters.

The convolve operation is a SIMD vector operation that
corresponds to taking the appropriate bits from the shift
register and XORing them to generate the encoded output
bits. It takes two input operands, Current State and Taps,
and generates one output operand, Data Out. The Taps

1To limit the number of input operands to three, Constraint
Length and Input Length, which do not vary when imple-
menting a particular encoder, are stored in the same register.

1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0

1 0

Constraint Length - 1

Current State

Align Current State
to 8-bits based on
Constraint Length

Insert Data In
based on the Input

Length

Data In

Input Length - 1

0

1

2

3
4
5
6

0 1 2 3 4 5 6 7

0

1

2

0

1

2

1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0

1 0
Right shift by

Constraint Length

0

1

2
7 - Constraint Length

Data Out
7 6 5 4 3 2 1 0

Figure 6: Hardware for update shifter operations.

00112233

77 66 55 44

Current State

Taps(1)

8

8 00112233

77 66 55 44

Taps(0)

8

Data Out(1) Data Out(0)

Replicate to Increase
Maximum Output Length

Figure 7: Hardware for convolve operations.

operand determines which bits of the Current State connect
to the XOR gates that produce Data Out. Its length is equal
to the Constraint Length times the Output Length.

Figure 7 shows a hardware design that implements the
convolve operation when the maximum Output Length is
two and the maximum Constraint Length is eight. The de-
sign consists of Constraint Length AND gates and one XOR
gate per Data Out bit, where the inputs to each XOR gate
are controlled by bits from the Tap operand. If bit n from
the Tap operand is one, then the corresponding bit from
Current State influences the output of the XOR gate. The
hardware can support larger maximum Output Lengths by
replicating the block shown in the dotted box and can sup-
port larger maximum Constraint Lengths by increasing the
number of AND gates and the fan-in of each XOR gate.

4.2 Viterbi Decoder
Convolutional encoders often work in conjunction with

Viterbi decoders, which have fixed decoding time and are
well suited for hardware implementation [9]. The main steps
for Viterbi decoding are shown in Figure 8. The text in
parentheses in Figure 8 shows the percentage of the total
execution time spent in each step in the original software
implementation on the Sandblaster Processor. The Add-
Compare-Select (ACS) function accounts for rougly 87% of
the overall execution time for the Viterbi decoder.

Three new operations are introduced to speed up the ACS
function; acs select metric, acs set flag, and select state. The
acs select metric operation is a vector operation that takes
three input operands, MetricIn, PathMetric1, and Path-
Metric2, and produces one ouput operand, MetricOut. Each

Compute Branch
Metrics
(7%)

Add Compare Select
(87%)

Done
Select Minimum Path

Metric
(4%)

Trace Back and
Recover Data

(2%)

Figure 8: Main steps for Viterbi decoding.

Add

Sub

Metric In

Path Metric 1

Path Metric 2

0

1

Metric1

>

0

1

Output Sel

Data Out

16

16

16

16

Flag

Metric
Out

Metric2

Figure 9: Hardware for add-compare-select opera-

tions.

VPE performs the following operation:

Metric1 = PathMetric1 - MetricIn;

Metric2 = PathMetric2 - MetrinIn;

if (Metric1 > Metric2)

MetricOut = Metric1;

else

MetricOut = Metric2;

The acs set flag operation is similar to the acs select metric
operation, except that rather than an assignment to Metri-
cOut, it returns a Flag operand that indicates the result of
the comparison. Each VPE performs the following opera-
tion:

Metric1 = PathMetric1 - MetricIn;

Metric2 = PathMetric2 - MetricIn;

if (Metric1 > Metric2)

Flag = 0;

else

Flag = 1;

The Flag operand set by the acs set flag operation is read
by the vector operation select state, which uses three input
operands, Flag, State1, and State2, to produce one output
operand, StateOut. Each VPE performs the following oper-
ation:

if (Flag == 0)

StateOut= State1;

else

StateOut = State2;

Figure 9 shows hardware for the acs select metric and

Add

Sub

MetricIn1

0

1

Metric2

Metric1

>

16

16

S
A
T
U
R
A
T
E

S
A
T
U
R
A
T
E

16

16

MetricOut
16

MetricIn2

MetricIn1

MetricIn2

Figure 10: Hardware for add-saturate-compare-

select operations.

acs set flag operations. The input operands, MetricIn, Path-
Metric1, and PathMetric2, are read from the vector register
file. The processor’s control logic sets the Output Sel signal
based on the operation being performed.

4.3 Turbo Decoder
Due to turbo coding’s outstanding error correction capa-

bilities, it is widely used in third generation wireless com-
munication systems. Turbo decoding consists of two steps;
forward recursion and backward recursion [2]. During for-
ward recursion, branch metrics are computed and forward
metrics are updated for each trellis transition. The decoder
then performs backward recursion to generate soft decisions.
Turbo decoding is very compute intensive and about 70% of
the execution time of the original code is spent performing
add-saturate-compare-select (ASCS) operations.

To facilitate turbo decoding, we add one new operation,
ascs turbo. This is a vector operation that takes in two 16-
bit input operands, MetricIn1 and MetricIn2, and computes
a 16-bit output operand MetricOut. Each VPE performs
the following operation:

Metric1 = Saturate(MetricIn1 - MetricIn2)

Metric2 = Saturate(MetricIn1 + MetricIn2)

if (Metric1 > Metric2)

MetricOut = Metric1

else

MetricOut = Metric2

As shown in Figure 10, the hardware design to implement
this operation is straight forward. The adder and the sub-
tractor saturate their outputs to either −215 or +215

− 1
based on the sign of the result. The greater of Metric1 or
Metric2 is selected as MetricOut. Due to similarities be-
tween the the acs select metric and acs set flag operations
for Viterbi coding and the ascs turbo operation for turbo
decoding, all three operations can share hardware.

Horner Reduction
(Horner Reduction, 82%)

Compute Remainder
(RS Encoder, 16%)

Compute Code Word
(RS Encoder, 2%)

Done

Figure 11: Main steps for Reed-Solomon encoder.

Compute Syndromes
(GF Dot Product, 70%)

Any Syndrome
Different from Zero?

Gaussian Elimination
(Gaussian Elimination, 2%)

Yes

No

Solve System Equation
(Solve System Equation,

2%)

Solve Error Locator
Polynomial

(Horner, 28%)
Done

Figure 12: Main steps for Reed-Solomon decoder.

4.4 Reed-Solomon Encoding/Decoding
Reed-Solomon coding is widely used in communication

standards such as Digital Video Broadcast (DVB) and the
IEEE802.16 WirelessMAN Standard. Reed-Solomon codes
are referred to as RS(N,K) codes with M-bit symbols. This
means the encoder takes K data symbols of M bits each and
adds N −K parity symbols to make an N symbol codeword.
On the receiving end, the Reed-Solomon decoder can correct
up to T symbols that contain errors in the codewords, where

T =
(N − K)

2
(1)

Reed-Solomon codes are particularly well suited to correct-
ing burst errors, in which a continuous sequence of bits is
received with errors [5], [11].

The steps for Reed-Solomon encoding and decoding are
shown in Figures 11 and 12, respectively. The text in the
parenthesis indicates the function name that implements the
particular step and the percentage of the total execution
time spent by each function in the original software imple-
mentation on the Sandblaster Processor. For the decoder,
the percentages assume a worst case scenario in which at
least one error is present in the received codeword, which
results in non-zero syndromes. In the more common case,
in which there are no errors, 98% of the execution time is
spent on computing the syndromes. Most of the time spent
in Reed-Solomon encoding and decoding involves vector op-
erations (e.g., dot products) in the Galois field GF(2m). In
GF(2m), addition is equivalent to the bitwise XOR of two
m-bit numbers.

Our instruction set extensions provide vector operations
for Galois field (GF) arithmetic, which is fundamental to
Reed-Solomon encoding and decoding. We investigate the
performance benefits of four GF arithmetic vector opera-
tions; gfmul, gfmac, gfmul2, and gfmac2 [19]. Table 1 sum-
marizes these operations and their functionality. In this ta-
ble, A ⊗ B denotes GF multiplication (GFMUL) of A with
B to generate a 15-bit intermediate product, C. The 15-bit
intermediate product is reduced using an irreducible poly-
nomial, P , of length, L + 1, to generate an 8-bit product,
D. The operation (A ⊗ B) ⊕ Acc denotes a GF multipliy-
accumulate (GFMAC) operation, in which Acc is added to
A ⊗ B using GF addition. The Galois field operations are
implemented by adding parallel GFMUL or GFMAC units
to the SIMD Vector Processing Unit. The gfmul/gfmac in-
structions use one GFMUL/GFMAC unit per VPE and the
gfmul2/gfmac2 instructions use two GFMUL/GFMAC units
per VPE.

Figure 13 shows a hardware design for implementing the
gfmul/gfmac instructions in each VPE. The GF Multiplier

Table 1: Proposed Galois field operations
Instruction Parallel Operations Operations

gfmul 4 Data Out = A ⊗ B

gfmac 4 Data Out = (A ⊗ B) ⊕ Acc

gfmul2 8 Data Out = A ⊗ B

gfmac2 8 Data Out = (A ⊗ B) ⊕ Acc

8-bit Galois Field
Multiplier

A B

8 8

15-bit Left ShifterL

8-bit Galois Field
Polynomial Reduction

3

15

15

P 3

8-bit Right Shifter

8

8-bit Galois Field Adder

8

8

8-bit 2-to-1 mux

Acc 0

8 8

Data Out

Mac L 3

D

C

Figure 13: Galois field multiply-accumulate unit.

consists of an 8x8 array of AND gates which generate the
partial products, followed by a tree of 64 XOR gates, which
sum the partial products using Galois field addition to pro-
duce a 15-bit intermediate product. The 15-bit Left Shifter
and 8-bit Right Shifter allow the length of the Galois Field
to vary from one to eight bits. The GF Polynomail Reduc-
tion Unit reduces the intermediate product from 15 bits to 8
bits. It consists of seven stages, where each stage has eight
parallel AND gates followed by eight parallel XOR gates.
The 8-bit GF Adder consists of eight parallel XOR gates.
The A, B, and Acc input operands come from the vector
register file. The values for P and L, which do not change
for a particular implementation of Reed-Solomon coding are
loaded into a special purpose register at the start of the al-
gorihm. Mac is set by the processor’s control logic based on
the operation being performed. The GFMUL unit is identi-
cal to the GFMAC unit, except it does not contain the GF
Adder or 2-to-1 Multiplexor.

5. EXPERIMENTAL RESULTS
In this section, we discuss the speedup of the applica-

tions due to the proposed instruction set extensions and the
bandwidth provided by each FEC algorithm when run on
a single Sandblaster Processor core. We also provide esti-
mates of the area and delay for the hardware designs that

Table 2: Speedup from Galois field operations
gfmul gfmac gfmul2 gfmac2

RS Decoder 8.4 12.5 11.5 12.7
RS Encoder 1.25 1.25 1.25 1.25

implement these extensions, using the design methodology
presented in Section 3.

The original implementation of convolutional encoding on
the Sandblaster Processor spends 65,061 cycles encoding a
512-bit packet with a Constraint Length of 5. This trans-
lates to a throughput of 4.7 Mbits/sec at 600MHz. The
implementation using the instruction set extensions spends
4,500 cycles to encode the same packet, resulting in a through-
put of 68MBits/sec at 600MHz and a speedup of 14.5. Us-
ing instruction set extensions usually results in reduction of
code size. In the case of the convolutional encoder, the code
that uses instruction set extensions is 74.6% the size of the
original implementation that does not use the instruction
set extensions. The hardware design for the update shifter
operation has an area of 5, 836µ2 per VPE with a worst case
delay of 0.34ns. The design for the convolve operation has
only 802µ2 per VPE with a worst case delay of 0.18ns.

The benchmark for the Viterbi decoder implements a soft
decision Viterbi decoder with an input packet of 344 6-bit
values, each of which represents a pair of encoded bits (i.e.
the input bit stream is produced by a 1/2 rate convolutional
encoder which generates a pair of output bits for each input
bit). The original implementation used 139,629 cycles,
while the implementation with instruction set extensions
used 39,000 cycles for a decoding throughput in excess of
16Mbits/sec at 600MHz and a speedup of 4.7. In terms of
code size, the implementation that uses the instruction set
extensions is 20% larger than the original implementation
due to additional instructions needed to unroll loops and
support vectorization. The three instruction set extensions
have a combined area of 10, 900µ2 per VPE. The worst case
delay is 0.74ns, which is seen on the acs select metric path.

The original turbo decoder used 479,989,032 cycles to de-
code 2,896 16-bit data samples. Adding the ascs turbo op-
eration speeds up turbo decoding by a factor of 2.35 and
decreases the number of cycles used to 204,250,651. This re-
sults in a output throughput of over 8.5MBits/sec at 600MHz.
The code size is reduced to 72% of the original implementa-
tion. The hardware that implements ascs turbo uses 7, 757µ2

for each VPE with a worst delay of 0.79ns.
The Reed-Solomon encoder and decoder are designed for

the DVB-T standard, in which the message size is 118 bytes,
the codeword size is 204 bytes, and up to eight errors can be
corrected [19]. In Table 2, we give the speedup of a Reed-
Solomon decoder and encoder for each of the proposed Ga-
lois field operations. The designs with gfmac/gfmac2 oper-
ations can also implment gfmul/gfmul2 operations, while the
designs with gfmul/gfmul2 operations perform gfmac/gfmac2
operations using two operations; a gfmul/gfmul2 operation
followed by an XOR operation. With gfmac2, we see a 12.7
speedup in the Reed-Solomon decoder, which reduces the
total number of cycles required to decode a 204-byte packet
from 88,303 cycles to 6,953 cycles. With the instruction
set extensions, the Sandblaster Processor performs worst
case Reed-Solomon decoding at over 150Mbits/second at
600MHz. The extensions also result in an enocoder that
is just 3% of the size of the original encoder and a decoder

that is just 7% of the size of the original decoder. This
large reduction in code size occurs because the original im-
plementation uses a 216-word by 8-bit table to implement
Galois field multiplication. Each GFMUL unit has an area
of 10, 688µ2 and each GFMAC unit has an area of 12, 463µ2.
The worst case delay for the GFMUL unit is 1.22ns and the
worst case delay for the GFMAC unit is 1.32ns.

Table 3 summarizes the proposed instruction set exten-
sions by giving the speedup, total area, and worst case de-
lay for each operation. For reference, the area of a 16-bit by
16-bit multiplier implemented in the same technology and
optimized for delay has an area of 24, 789µ2 and a worst case
delay of 2.2 ns. The proposed instruction set extensions will
not increase the processor’s cycle time, which is currently
1.67ns, since vector instructions have four execute stages.

6. RELATED WORK
This section describes related work on instruction set ex-

tensions for wireless communications. Early research on
hardware designs for convolutional encoders includes work in
[3], which gives pipelined and parallel hardware implementa-
tions for convolutional encoders. More recently, DSP man-
ufacturers including Texas Instruments and Freescale Semi-
conductor provide bit interleaving and bit de-interleaving
instructions to facilitate convolutional encoding [17].

Viterbi decoders have high computatinal complexity and
often require hardware support for real-time processing. This
can be done either by a hardware accelerator, where part
or all of the Viterbi decoder is performed by an on-chip
co-processor [20] or by instruction set extensions. Tensil-
ica provides instruction set extensions to implement the
Viterbi butterfly for their configurable Xtensa processor and
[12] presents hardware support to perform the add-compare-
select operation.

Since the standardization of Turbo-codes in 1994, the
complexity of their implementation has sparked many re-
search studies. [1] maps the process of turbo decoding to a
reconfigurable processor called XiRisc. Several commercial
DSP companies provide hardware support for turbo decod-
ing through on-chip hardware accelerators [15].

For high-speed Reed-Solomon encoding and decoding, sev-
eral hardware implementations are available. Most common
hardware implementations are based on Linear Feedback
Shift Registers (LPSR) [21]. The authors of [5] propose in-
struction set extensions for the configurable Xtensa proces-
sor that facilitates software implementation on a single-issue
processor to achieve high-speed Reed-Solomon decoding.

Unlike related work in this area, this paper presents in-
struction set extensions and hardware designs on a compound-
instruction, multithreaded processor with SIMD vector op-
erations for several FEC algorithms.

7. SUMMARY
In this paper, we analyze important FEC coding algo-

rithms used for software defined radio. We propose new
SIMD vector operations for these algorithms to improve
their overall performance. We target the new operations
to the Sandblaster Processor, find the speedups for the ap-
plications due to the new operations, and suggest hardware
to implement these operations. Our analysis shows that
the proposed instruction set extensions provide significant
speedups with modest area requirements.

Table 3: Summary of operation, speedup, area and delay
Application Operation Speedup Total Area (µ2/VPE) Delay (ns)

Convolutional Encoder update shifter 14.5 6,638 0.34
convolve

Viterbi Decoder acs select metric 4.7 10,900 0.74
acs set flag
select state

Turbo Decoder ascs turbo 2.3 7,757 0.79
Reed-Solomon Decoder gfmul 8.4 10,688 1.22

gfmul2 11.5 21,376 1.22
gfmac 12.5 12,463 1.32
gfmac2 12.7 24,926 1.32

8. REFERENCES
[1] A. La Rosa, L. Lavagno, and C. Passerone.

Implementation of a UMTS Turbo Decoder on a
Dynamically Reconfigurable Platform. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 24(1):100–106, January 2005.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima. Near
Shannon Limit Error-Correcting Coding and
Decoding: Turbo Codes. In 1993 International
Conference on Communications, pages 1064–1070,
1993.

[3] D. Haccoun and P. Lavoie and Y. Savaria. New
Architectures for Fast Convolutional Encoders and
Threshold Decoders. IEEE Journal on Selected Areas
in Communications, 6(3):547–557, April 1998.

[4] D. M. Tullsen, S. J. Eggers, and H. M. Levy.
Simultaneous Multithreading: Maximizing On-Chip
Parallelism. In International Symposium on Computer
Architecture, pages 392–403, June 1995.

[5] H. M. Ji. An Optimized Processor for Fast
Reed-Solomon Encoding and Decoding. In IEEE
International Conference on Acoustics, Speech, and
Signal Processing, pages 3097–3100, 2002.

[6] Y.-H. Huang, H.-P. Ma, M.-L. Liou, and T.-D.
Chiueh. A 1.1 G MAC/s Sub-Word-Parallel Digital
Signal Processor for Wireless Communication
Applications. IEEE Journal of Solid-State Circuits,
39(1):169–183, January 2004.

[7] J. Glossner, D. Iancu, J. Lu, E. Hokenek, and M.
Moudgill. A Software Defined Communications
Baseband Design. IEEE Communications Magazine,
41(1):120–128, January 2004.

[8] J. Glossner, S. Dorward, S. Jinturkar, M. Moudgill, E.
Hokenek, M. Schulte, and S. Vassiliadis. Sandbridge
Software Tools. In Lecture Notes in Computer Science
- Embedded Computer Systems: Architectures,
Modeling, and Simulation, volume 3553, July 2005.

[9] J. Hagenauer and P. Hoeher. A Viterbi Algorithm
with Soft-decision Outputs and its Applications. In
Global Telecommunications Conference, pages
1680–1686, 1989.

[10] Joint Tactical Radio System (JTRS) Joint Program
Office. Specialized Hardware Supplement to the
Software Communication Architecture (SCA)
Specification, August 2004.

[11] L. Song, K. K. Parhi, I. Kuroda, and T. Nishitani.
Hardware/software Codesign of Finite Field Datapath
for Low-energy Reed-Solomon Codecs. IEEE
Transactions on Very Large Scale Integration (VLSI)

Systems, 8(2):160–172, 2000.

[12] M. Hosemann, R. Habendorf, and G. P Fettweis.
Hardware-Software Codesign of a 14.4 MBit - 64 state
- Viterbi Decoder for an Application-Specific Digital
Signal Processor. In IEEE Workshop on Signal
Processing Systems, pages 45–50, August 2003.

[13] M. Mehta, N. Drew, G. Vardoulias, N. Greco, and C.
Niedermeier. Reconfigurable Terminals: An Overview
of Architectural Solutions. IEEE Communications
Magazine, 39(8):146–155, August 2001.

[14] M. Schulte, J. Glossner, S. Mamidi, M. Moudgill, and
S. Vassiliadis. A Low-Power Multithreaded Processor
for Baseband Communication Systems. Embedded
Processor Design Challenges: Systems, Architectures,
Modeling, and Simulation, Lecture Notes in Computer
Science, 3133:393–402, July 2004.

[15] J. N. Popovic. Decoding Convolutional and Turbo
Codes in 3G Wireless. Available from
http://www.ti.com/, 2005.

[16] R. E. Blahut. Algebraic Codes for Data Transmission.
Cambridge University Press, 2003.

[17] W. Rouwet. Building a Convolutional Encoder Using
RCF Technology. Available from
http://www.freescale.com/, 2004.

[18] S. Jinturkar, J. Glossner, V. Kotlyar, and M.
Moudgill. The Sandblaster Automatic Multithreaded
Vectorizing Compiler. In 2004 Global Signal
Processing Expo and International Signal Processing
Conference, September 2004.

[19] S. Mamidi, M. Schulte, D. Iancu, A. Iancu, and J.
Glossner. Instruction Set Extensions for Reed-Solomon
Encoding and Decoding. In IEEE 16th International
Conference on Application-specific Systems,
Architectures and Processors, pages 364–369, 2005.

[20] Texas Instruments. TMS320C6418 Fixed-Point Digital
Signal Processor Data Manual. Available from
http://www.ti.com/, 2004.

[21] Y. Katayama and S. Morioka. One-Shot Reed-Solomon
Decoder. In Annual Conference on Information
Science and Systems, pages 700–705, 1999.

